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1 INTRODUCTION AND MOTIVATION
In the past, verification tools were considered to be a frivolous,

unrealistic pursuit that would be of little use to programmers and

the software industry. De Millo et al. famously ridiculed the desire

to produce verified software, stating “A sufficiently fanatical re-

searcher might be willing to devote two or three years to verifying

a significant piece of software if he could be assured that the soft-

ware could remain stable” [5]. Of course, software is almost never

stable, especially if it is in active development. In addition, many

software engineers believe that verification has a steep learning

curve and requires a monumental effort to verify even small pieces

of code [12]. However, the status quo has recently changed due to

numerous factors.

Software programs become increasingly pervasive and critical

in every aspect of our modern social activities. Software crashes,

malfunctions, and low performance can be incredibly expensive

for companies, which increases the importance of verifying that a

piece of software does what it is supposed to do. While testing is

the most common approach in software engineering of ensuring

that software meets the spec it is supposed to implement, formal

verification through machine-checked proofs by interactive theorem
provers (ITPs) provides stronger guarantees and meets a higher

standard of correctness. Researchers and industry professionals

have developed many ITPs, such as Coq [18], Lean [11], Isabelle [7],

and Agda [17], to support various proof tasks. For instance, ITPs

have been used to verify seL4 [10], an operating system microker-

nel, and Raft, a distributed computing consensus algorithm that is

equivalent to Paxos in fault tolerance [21].

Among them, Coq is one of the most widely-used interactive

theorem provers. Coq has a unique live programming interaction
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model. In most conventional programming languages, program-

mers write a whole program, which is then executed in its entirety

by an interpreter or compiled to an executable. With Coq, however,

programs can be executed incrementally, stepped forward or back-

ward one command at a time, and constant feedback is provided by

a read-eval-print loop (REPL). The REPL provides important con-

text for completing proofs in Coq, such as the proof state, which
contains of available hypotheses that are known to be true as well

as the remaining cases of the proof that need to be proved. Coq pro-

grams consist of a specification language, called Gallina, and a tactic
language, called Ltac, which is used to write proof scripts (see Fig-
ure 1 for an example of proof state and proof scripts). Researchers

have used it to develop Verdi, a framework used to formally verify

distributed systems [20], verify an optimizing C compiler [8], a

disjoint set data structure [4], and the four color map theorem [6].

Coq is also the language that is formally taught in CSE 505, the

graduate-level programming languages course at the University of

Washington, for the past five offerings.

Despite being proven to be widely useful for guaranteeing a high

level of security, integrity, and reliability, ITPs are infamous for

their steep learning curve. Even within the fields of programming

languages (PL) and formal methods, ITPs have a fierce reputation

for being notoriously difficult to use. There have been no studies

that actually evaluate this commonly accepted folk knowledge, nor

any studies that assess the usability of ITPs. Given that verification

and proving are only increasing in their power, usefulness, and

popularity, evaluating the barriers to learning how to use ITPs —

as well as identifying what has worked for those who do use ITPs

— is important for improving the accessibility of ITP tools as well

as making safety-critical software more secure.

In this paper, we focus on Coq to demonstrate potential learning

barriers and ways to improve its general accessibility and usability

for both beginner and more advanced users of ITPs. While there

are many other ITPs, Coq is an appropriate subject for this study

considering the time constraints of this course project, the specific

expertise and insight into Coq that the first author has to offer, and

the course CSE 505, which is often taught using Coq, including in

its latest iteration in Spring 2021.

In section 2, we give important background and show how other

researchers have studied similar problems. We then present our

methods and procedures (section 3) for investigating potential learn-

ing barriers of using Coq. Then we reflect on our interview and

analysis results according to the conceptual model of six learn-

ing barriers [9] and identify additional, potentially Coq-specific

learning barriers (section 4). We then discuss the implications of

our identified learning barriers in improving accessibility and us-

ability of Coq, and more broadly, all ITPs (section 5). Finally, we
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Figure 1: Screenshots of a Coq program being run in the pop-
ular lightweight IDE Visual Studio Code, using the extension
VSCoq to provide support for running Coq programs. On
the left of each screenshot is the actual Coq program. The
Definition command is used to define non-recursive vari-
ables and functions. The Lemma command defines a lemma or
theorem. On the right of each screenshot is the proof state.
In the second screenshot, the proof has been stepped from
the beginning of the proof script to the right after the first
line of the proof script (which is represented by the green
highlighting), and goes from having one goal to having five.
Lines 381-396 are written in Gallina. Lines 398-403 are writ-
ten in Ltac.

conclude our work by discussing its limitations and opportunities

for future work (section 6). In this report, we make the following

contributions:

• A set of possible learning barriers for interactive theorem

provers that will guide future investigations into our main

research question.

• Initial findings for improving the overall accessibility and

usability of interactive theorem provers, in particular Coq,

in the fields of verification and formal methods.

• Additional ideas for tools and resources that beginner-intermediate

Coq users might find particularly useful.

2 RELATEDWORK
ITPs have typically been a niche tool since their inception. Due to

their status as research software and the relatively small communi-

ties that use these tools, there has not been any work that studies

how people learn to use ITPs. However, there has been preliminary

work on improvements for ITPs, how instructors can use ITPs to

teach other subjects, how to study how people use ITPs, as well

as important background work in the areas of computer science

education and learning.

Using HCI Methods to Evaluate PL Tools. Chasins et al. describe
an initial methodology to organically combine human-computer

interaction (HCI) and programming languages (PL) so that together

they can make programming easier [3]. In particular, PL researchers

and practitioners can make iterative, user-centered design decisions

by observing and understanding how users doing complex com-

puting tasks and interacting with programming systems. Feedback

from users at multiple design stages can enable language and tool

designers make more user-friendly features that solves real user

problems. Combining human cognition, behavioral science, and de-

sign heuristic, PL researchers can maximize language ergonomics

that matches existing mental models of target users, and make

programming-specific functionalities that users feel most comfort-

able with. Usability evaluation provides PL researchers a concrete

and rigorous way to measure the effectiveness and efficacy of their

language-specific designs, tools, and improvements.

Improvements for ITPs. Due to the high effort needed to use in-

teractive theorem provers, various systems have been developed

to support Coq programmers. Proof General is an Emacs package

that provides support for the REPLs of multiple interactive theorem

provers, including Coq [2]. It is one of the main “IDEs” that Coq pro-

grammers use, due to its numerous features and keyboard shortcuts.

Another Emacs package, company-coq, provides additional support

for Coq akin to that of modern IDEs, including code completion,

code-folding, documentation help, code snippets and templates,

etc. [14] For an even more automated approach, Yang et al. used

machine learning to create a model that attempts to automatically

generate a proof of a given theorem [22]. Combined with other

proof automation techniques, their model was able to prove 30% of

the theorems in their testing set of about 13,000, which outperforms

any other technique taken alone.

Studying Coq Users. Tavante describes a potential approach for

doing a data-centered user study of ITPs [16]. By utilizing a web-

based implementation of Coq, called jsCoq [1], a server could log

events in jsCoq to a database, collecting massive amounts of data

on users. Ringer et al. instrumented the Coq REPL to gather data

on how twelve proof engineers, whose level of expertise ranged

from intermediate to advanced [15]. They wanted to understand

where proof engineers ran into problems so that automated tools

could better assist proof engineers in tasks such as refactoring and

proof repair.

Learning Barriers for Programming. Ko et al. describe six barriers

to learning a programming system, which consists of all of the

supporting software and tools around the usage of a programming

language [9]. These barriers include design, selection, coordina-

tion, use, understanding, and information. While Visual Basic.NET

is often considered an end-user programming system, we decide

that the six learning barriers are general enough to be applied to

our study on how people learn to use Coq. Moreover, since Coq

consists of not only the languages Gallina and Ltac but also the

live programming REPL interaction, this paper may provide a more

comprehensive framework of Coq as a system. We expand on this

work further in Section 4 of our work.

This work is a part of a larger effort to study how people use

ITPs. However, there has been no prior work in this project since

it is in its beginning stages.
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3 METHODS
In order to explore what students found were barriers to learning

Coq, their feelings about proof assistants, and their perceived bene-

fits, we conducted interviews with students who took CSE 505 in

Spring 2021
1
by Zachary Tatlock and James Wilcox, who were both

a part of the Programming Languages and Software Engineering

(PLSE) lab at the University of Washington. The class was taught

remotely over Zoom and consisted of lectures twice a week where

programming languages concepts were introduced and the instruc-

tors would write Coq code live in front of students, several readings

on various programming languages and verification topics, and

six homework assignments where students were expected to write

code in Coq in pairs. The homework assignments involved a num-

ber of “core” problems, as well as extra “challenge problems” that

students could gain additional points for completing.

We chose to interview students who had taken CSE 505 in Spring

2021 in particular for a number of reasons. First, the first author

took CSE 505 in Spring 2021, and therefore would have insight into

the class structure and added rapport with their former classmates.

Second, Spring 2021 is the most recent quarter that CSE 505 has

been offered. Ideally, it would have been better to have interviewed

students who were currently taking the course so that their memo-

ries would be more fresh, but CSE 505 is not planned to be offered

at all in the 2021-2022 academic school year at the University of

Washington since the main instructor is on sabbatical. Finally, we

recruited participants who took the course all in the same quarter

so that their experiences would be more standardized, since they all

saw the same content and had the exact same homework problems.

3.1 Participants
We recruited participants by emailing past students of CSE 505 via

course mailing lists. Our email included a link to a screening survey

in which potential participants were asked about their demographic

information and their background in mathematics, programming

languages, and Coq.

We received 7 responses for our survey, and we invited all re-

spondents to participate in our interview study (see Table 1). In our

invitation email, we included a copy of our information sheet for

them to preview. All our participants were 18 years or older. Four of

them identified as male, one identified as genderqueer, nonbinary,

or genderfluid, one identified as female, and one preferred not to

disclose their gender. All of our participants all reported to at least

have some experience taking undergraduate-level mathematics and

programming languages courses prior to taking CSE 505, although

most of them (4 out of 7) had never used Coq before taking the

class.

3.2 Interview Procedure
For ease of interviewing and to accommodate interviews during

the COVID-19 pandemic, we decided to let our participants choose

whether they wanted to be interviewed in-person or remotely. We

ended up interviewing 3 participants via Zoom, and the rest in-

person at the University of Washington. Each interview session

lasted around an hour, andwe recorded audio for all of them. During

1
The course website can be found at https://sites.google.com/cs.washington.edu/cse-

505-spring-2021.

each interview, one of the authors would take the lead in asking

questions, while at least one other author would be present to take

notes and ask additional questions.

Our interview protocol began with an introduction of our study

objectives, followed by a series of questions regarding their aca-

demic and/or professional background, with an emphasis on their

experience associated with mathematical proofs, software verifi-

cation and programming languages. We then asked them about

their experience taking CSE 505, particularly their experience learn-

ing to use Coq. We concluded our session by asking their opinion

about proof assistants in general. We employed a semi-structured

interview model, so that we had the flexibility of asking follow-up

questions of our participants.

3.3 Qualitative Analysis
After we finished recording all the interviews, we transcribed the

interviews using the tool otter.ai [13], which uses machine learning

techniques to transcribe audio. After transcription, we manually au-

dited the transcripts to ensure accuracy and to fix misspellings and

punctuation. We randomly split up the participants’ transcripts into

two groups of two transcripts and one group of three transcripts,

and each author coded one group. Unfortunately, the audio for P7

was unusable due to audio interference and microphone difficulties,

so we instead coded our notes for that participant.

After coding the transcripts, the authors compared the codes they

generated and consolidated them. Ideally, each transcript should be

coded by at least two different coders. However, we were unable to

do so due to time constraints. Once we had a finalized list of codes,

we performed a thematic analysis on the data. Using the tool Miro

[19], we copied and pasted all of the quotes of interest as sticky

notes and tagged them with the various codes we generated. After

we input all of our quotes, we organized the quotes into general

themes, and mapped them to Ko et al.’s six learning barriers [9] if

appropriate. We give a brief summary of these barriers in Table 2.

4 RESULTS
In this section, we identify six common themes we observed across

all of the interviews. As outlined in Table 4, they are: language

deficiencies, learning strategies, language resources, motivation,

background knowledge, and pair programming. In the interest of

providing a more in-depth, careful analysis for fewer themes rather

than a cursory examination of more themes, we decided to leave

analysis of the pair programming and language deficiencies themes

for future work.

We provide an in-depth analysis of the four other themes, and

then evaluate how these themes benefited or detracted from how

participants learned to use Coq. When participants experienced

difficulties, we additionally analyze whether the framework of six

learning barriers applies to the participants’ situations. When they

fail to fully capture our observations about participants’ learning

barriers, we propose our own: Dead End, Applicability, and Envi-
ronment (See Table 3).

Dead End occurs when a Coq user reaches a point in their proof

where they do not know how to proceed. This is different from

the learning barriers that Ko et al. described, because, as we will

see in subsection 4.1, Learning Strategies, the process of proof

https://sites.google.com/cs.washington.edu/cse-505-spring-2021
https://sites.google.com/cs.washington.edu/cse-505-spring-2021
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Table 1: Demographic data and study logistics for our study participants. P1 and P2 are our pilot study participants.
In the Gender column, PND = “Prefer not to disclose”, F = “Female”, GQ/NB/GF = “Genderqueer, nonbinary, or genderfluid”, and
M = “Male”;
In the Background in Math column, Little to None = “Little to none experience in mathematical proofs”, Undergrad = “Took
undergraduate-level course(s) in mathematical proofs”, Grad = “Took graduate-level course(s) in mathematical proofs”.

Participant Gender Interview Format Occupation Background in Math Background in PL

P1 PND In-person PhD Student in CS Undergrad PL/HCI researcher

P2 F In-person Researcher in CS Grad PL researcher

P3 GQ/NB/GF Remote PhD Student in CS Grad Took some courses

P4 M Remote Software Engineer Undergrad Took some courses

P5 M In-person PhD Student in CS Grad PL researcher

P6 M Remote Software Engineer Little to None Took some courses

P7 M In-person PhD Student in CS Grad PL researcher

Table 2: Ko et al.’s six learning barriers [9]

Learning Barrier Description

Design "Inherent cognitive difficulties of a programming problem, separate from the notation used to represent a solution."

Selection "Properties of an environment’s facilities for finding what programming interfaces are available and which can be used to achieve a

particular behavior."

Coordination "A programming system’s limits on how programming interfaces in its language and libraries can be combined to achieve complex

behaviors."

Use "Properties of a programming interface that obscure (1) in what ways it can be used, (2) how to use it, and (3) what effect such uses will

have."

Understanding "Properties of a program’s external behavior (including compile- and run-time errors) that obscure what a program did or did not do at

compile or runtime."

Information "Properties of an environment that make it difficult to acquire information about a program’s internal behavior."

Table 3: Additional learning barriers we identified

Learning Barrier Description

Dead End A Coq learner may reach a point in their proof where they do not know how to proceed.

Environment A Coq learner may feel unwelcomed in Coq’s social environment and community.

Applicability A Coq learner may question why learning to use ITPs can benefit them in real life.

writing is actually the search of the space of possible proofs, instead

of the design and implementation of an algorithm for solving a

problem. In conventional programming languages, programmers do

not typically try every possible combination of language constructs

and functions on a particular line of code before proceeding. Due

to the fact that participants reported frequently using a trial and
error strategy, however, this is precisely what they did in Coq. Due

to the exploratory nature of this kind of programming, users can

work themselves into a dead end.
Our second Coq-specific learning barrier, Applicability, arises

when users are not sure how verification using ITPs is useful, do

not know how ITPs and the problem solving methods used with

ITPs can be applied to problems that they care about, or believe

that it would be too much effort to use an ITP to verify software.

We frequently saw Applicability associated with the themes Moti-

vation and Background Knowledge, though it may also affect how

participants perceived the the documentation (Langauge Resources)

or quirks of the Coq language (Language Deficiencies).

The final learning barrier we identified, Environment, refers to

the social environment and community surrounding Coq, and how

that environment can become a barrier to learning and adoption.

This problem is particularly profound in the Background Knowl-

edge theme, since background knowledge can be used as a gate-

keeping mechanism in the PL community. It is also applicable in the

themes Langauge Resources and Pair Programming, since language

resources, which are frequently online for many programmers, are

usually created by a community, and pair programming inherently

creates a social environment.

4.1 Learning Strategies
Besides using the resources discussed above, participants also named

a number of different strategies they used to learn how to use and
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Table 4: The themes generated in our qualitative analysis, and learning barriers that we observed as playing a role in that
theme. Learning barriers in bold are ones that we discovered in the process of performing the qualitative analysis.

Theme Description Observed Learning Barriers

Language Deficiencies Issues with syntax, the Ltac language, the Gallina language, and the REPL interac-

tion model.

Design, Selection, Coordination, Use, Understand-

ing, Information, Dead End
Learning Strategies Strategies participants used for learning Coq, which included trial and error and

learning by example.
Selection, Coordination, Dead End

Langauge Resources Use of the official docs, Google, StackOverflow, textbooks, tutorials, cheatsheets, etc.

for learning Coq

Use, Understanding, Environment

Motivation Participants’ goals and motivating factors for learning Coq Applicability
Background Knowledge How participants’ specific backgrounds (in math, PL, or software engineering)

helped or hurt them when they were learning and programming in Coq.

Design, Use, Applicability, Environment

Pair Programming Participants’ experience learning Coq and working on Coq assignments together

with another partner.

Environment

prove theorems in Coq, such as watching and taking notes of the

CSE 505 instructors programming live in class, or explaining tactics

to other people such as their homework partner (P1, P4, P5, P6). In

this section, however, we will focus on two strategies that are most

common among our participants when they tried to learn how to

use Coq and wrote proofs on the CSE 505 homework.

Trial and Error. Here, trial and error refers to the process of exper-

imenting with a set of different tactics until finding the one with

expected behaviors. Part of the reason why participants used a trial

and error approach is simply because it was easier, and was facili-

tated by the Coq REPL. For P3, “it was definitely easier to guess and

check than...to check more by reading first and just ...self-proving

everything to start with.” For other participants, the Coq REPL al-

lowed them to see how parts of the Coq code worked, which helped

build up a mental model for programming in Coq. P6 stated that

the through the process of trial and error, he “started to get the idea

of like, ’Okay, here’s...what proving a lemma does, here’s...why you

might do something...just assert something and then move on, and

then come back and prove it later,” and after using trial and error

for a while, he “could...see...[how] the building blocks [of the proof

could be] put together and imagine how it could be used really,

in a really complex way.” Similarly, P5 reported, “I loved stepping

through the [Coq code],” which allowed him “to work...with [his]

partner and...understand...her proofs by stepping through.” In con-

ventional programming languages, programmers frequently have

problems with reading other’s code. P5 however found that even

when “there [were] tactics that [he] didn’t know...[he] could just

step through and see, ‘ah, this is what it’s doing on this [piece of

code].”’ He believed that “having that interactive view [was] abso-

lutely critical.” In this way, Coq actually avoids the Understanding
barrier, since the program’s external behavior is always displayed

by the REPL. Additionally, when the “trial and error” approach was

successful, this allowed participants to avoid many of the difficulties

associated with the Design, Selection, and Coordination barriers

identified by Ko et al.

Participants often compared Coq to playing a video game (P1,

P3, P5). Sometimes, this gamification of proof writing was help-

ful. P5 reported that he “[played Coq] like a video game. So [he]

basically...took [a proof goal], and [he] just tried to whack at it

with tactics until [the proof] worked.” This gamified experience

created a “cycle of gratification” for P2, who said “it made [her]

feel...like those mice in experiments where they...press the button

and get the cookie.” In this way, theorem proving in Coq could

actually be fun for participants. However, this could also lead to

limited understanding for some participants. P2 recalled “if you

[couldn’t] figure out what the right [tactic] is to make the proof

assistant happy then” you would be frustrated. Even so, P2 said “it

was almost like, addicting to like, keep trying different things,” so

she continued to work at the proofs even when she couldn’t figure

out the problem. For the most part, the trial and error approach

worked for participants, but when it didn’t, participants were at

a loss. P5 said, “The difficulty that arose...when this [tactic] isn’t

enough, why2 isn’t enough?” This Dead End barrier provided a

great source of frustration for participants.

Using the trial and error strategy lead participants to develop

very ad hoc mental models of Coq’s tactics. P5 said he while he

“mechanically...picked up [how to use the tactics] eventually, by

the end,” before he did figure out the tactics, he said, “I never knew

which one to use...So I would just use one. And then if it worked, I

would go on, and if not, I would use the other. But sometimes, it was

really frustrating in figuring out like, why isn’t [it working]?...It

does look like it’s semantically gonna like, work out. Why isn’t [the

tactic] doing [what I think it should]?” So in addition to running

up against a Dead End barrier, P5 was also encountering the Use

barrier as well.

Learning by Examples. Some participants also mentioned that see-

ing examples often helped them learn better, especially when they

were not able to write Coq programs completely by themselves as

beginners. For example, P1 noted that he “cannot sit and build some-

thing from scratch”, which is similar to P4, who commented that “I

can use it. But could I write it from scratch? Maybe not. Maybe not

without a lot more practice.” Therefore, many participants agreed

that going through examples was an important way for them to go

beyond tactic descriptions and to gain more in-depth understand-

ings on tactics. P4 noted that “I guess I understood what they meant

by just beyond the terse description, what you see in the in the

actual comments in the official quote, unquote, documentation. So

it helped me dig a little deeper look at other examples.” Moreover,

P1 and P6 considered this learning-by-examples strategy the most

efficient way for them to learn Coq. P6 noted that “the only way I

2
Emphasis ours.



CSE 510, January 4 – March 17 2022, Seattle, WA Seo, et al.

was really absorbing it at that point was like, here’s some examples

of code”. Similarly, P1 commented, “in terms of tactics, I’ve never

remember, I need to see examples”. P1 further argued that by pro-

viding more examples, Coq would become a much more friendly

programming language from the “unusable tool” it is right now.

Specifically, P1 describe the desired improvement as such: “every

part of the program should have its own sorts of like, examples of

inputs and visualization of outputs”.

However, one participant, P5, noted that he found it hard to fully

understand examples written by other people. He described how

he was not able to extrapolate other’s code to his own situation just

by reading it online, saying that “just looking at someone’s Coq

proof doesn’t tell you what’s going on. You have to step through

it.” The proof state (see Figure 1) is a rich source of information for

Coq programmers, and without it, proof scripts in Coq are nearly

incomprehensible, especially if they are long.

4.2 Learning Resources
When learning to use Coq, all of our participants reported that they

made use of online or offline resources in addition to attending the

CSE 505 lectures when they were working on their assignments.

Those resources include but are not limited to: the official docu-

mentation written by the Coq development team, documentation

and examples curated by other institutions, textbooks, lecture code,

and community notes collectively developed by their classmates in

CSE 505.

Official Documentation. All of our participants noted that the official

documentation produced by the Coq development teamwas lacking

in multiple aspects, such as readability, accessibility, and usability.

P1, for instance, said “the documentation is...just like all jar-

gon...using these, like complicated [terms], not providing really

simple examples, like it just makes it, you know, very, very hard for

people to use.” P1 gave up on using the documentation, and said,

“I don’t think I would have used the documentation just because

the documentation is like, terrible.” P2 thought that “it’s a problem

that the docs are written for Coq experts, not Coq beginners,” and

observed that “especially compared to some other programming

language docs, they’re not approachable.” She questioned “who are

doc’s for? And what purpose do they serve? And what are the goals

of whoever’s writing the docs?” Use and Understanding capture

these readability and usability issues in the official documentation,

given that it obscures the meanings, running behaviors, and usages

of Coq tactics, making it hardly approachable, particularly for be-

ginners. Additionally, the use of jargon produces an Information

barrier, since in order to understand the internal behavior, users

must understand the jargon.

Multiple participants emphasized the need for some kind of

search tool for tactics. As outlined in subsection 4.1, all of our

participants engaged in some kind of brute-force trial-and-error

method of proof writing. For simpler proofs, this would often com-

plete the proof. But for more complex proofs, participants(P3, P4,

P5) reported sometimes hitting a wall that was difficult for them

to circumvent. P2 said that “she [thought] she never figured out

how to use Search3 very effectively,” so she only knew the tactics

3
In Coq, Search is a command that allows programmers to look for lemmas. It is

difficult to use however, and often pulls up hundreds of results for a given query.

covered in class. P5 reported that while he “[knew] conceptually

what [he] [wanted] to do,” he “would have a [proof] hit a wall

and then like, not know what [tactic] to hit [the proof] with.” At

this point, he would “[turn] to the documentation, and [continue]

to struggle.” Responses from our participants reinforced Use as a

substantial learning barrier described by Ko et al.

External Resources. Given how lacking the official documentation is,

many of the participants we interviewed used non-official Coq re-

sources such as lecture notes and code, community notes developed

by classmates, and posts on Stack Overflow.

Even though some of these resources were helpful, participants

still reported having problems finding the right tactic. P5 recalled

that “[he] would hit a wall, at which point [he] would really just

scroll through the list of tactics that [the course instructors] gave.”

He recalled that the list was from a “Cornell website.” P5 is likely re-

ferring to a Coq tactics cheatsheet that was published by a course at

Cornell University
4
, which includes much more detailed examples

than the official documentation. P5 really appreciated this external

resource, calling it “pretty clutch.” However, this cheatsheet only

includes examples and usages for 27 of the hundreds of tactics in
Coq. P5 remembered one time where he needed one tactic in partic-

ular, and that tactic was not listed on the cheatsheet. He said it “just

did not emerge from the search...I killed, like eight hours [trying

to find it].” This again constitutes an example of the Use barrier in

Coq.

4.3 Motivation
Our findings suggests that there are several motivating factors for

people to learn Coq. While Ko et al. did not include motivation in

their framework, we observed that motivation was an important

factor in our participants’ learning experiences. The logic here

is straightforward: those who find learning Coq interesting and

beneficial for their own field of study or work are more likely to

put more time and effort into it despite of the high learning curve,

which may counteract the negative effect of learning barriers they

have encountered.

A major motivation emerged from our interviews with P4 and

P6 was formalizing skepticism about programs during development.

In industry, programs are rarely built from scratch. As a common

practice, software developers usually build their programs on top

of dependencies, such as other programs, libraries, and frameworks.

Each program has its own assumptions and guarantees. It can be

beneficial to be skeptical about whether your code violates the

assumptions or inappropriately assumes facts about the guarantees

of the code dependencies. This way of thinking can help increase

software quality by formalizing program states, specifications, in-

puts and outputs, and guarantees. This tangential benefit motivates

our participants to continue learning Coq to develop more holistic

view about programs. P6 said in his interview:

The question is, as we change those systems, are we

violating the previous assumptions? That’s where I

think having thatmodel available . . . this featurewe’re

asking for, isn’t really possible? or it wouldn’t be wise

to do that, because the assumption was, you know, x,

4
Cornell is known, at least in the PL research community, for having very good PL

faculty.

https://www.cs.cornell.edu/courses/cs3110/2018sp/a5/coq-tactics-cheatsheet.html
https://coq.inria.fr/refman/coq-tacindex.html
https://coq.inria.fr/refman/coq-tacindex.html
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and now you’re trying to create this other path that

shouldn’t exist.

Another motivating factor to learn Coq for engineers is the over-

lapping between theoretical concepts in Coq and actual applications

in their everyday tasks. Knowing that there are some real-world

applications of Coq in their day job helps them conceptualize the

knowledge, which helps them perform better and contribute more

in their work. Then the rewarding results from their work continue

to stimulate them to learn more about Coq. This positive feedback

loop creates constant motivations for our participants to learn Coq.

P4, who has over two decades of industry experience in software

testing and now in distributed system, find that learning Coq helped

him build more confidence when encountering problems by exclud-

ing a huge amount of incorrect direction. He illustrated the example

by saying,

Someone was telling me that they saw two primaries

at once, and I was like, “I don’t think you saw that.

I think what you saw was a program didn’t check

whether it was primary or not, and then assumed it

was primary and did an action that only a primary

could do. And since therewas no check on it, it seemed

to succeed, but what you actually have is a program

that’s not checking its error conditions.” And I was

pretty confident5 saying that, because I was like, if

that were the case, this would be broken 99% of the

time in production, that’s not happening...I felt pretty

confident.

On the other hand, when motivation was missing, participants

found that they struggled more. P3 didn’t find programming in Coq

as compelling as programming in a conventional language, saying,

“I guess for intro CS courses, it felt easier to relate to the code...to

what we were actually trying to achieve.” As an example, they said

that with conventional programming, they might “want to make a

game. Here are some ideas that I kind of have a better intuition for

how to make a game.” But with PL, P3 thought “that link...didn’t

seem as clear.” This issue of Applicability continually came up as a

factor for our participants on why they would not want to use Coq

again in the future.

4.4 Background Knowledge
As a language that enables proofs of mathematical and algorithmic

theorems, it is important that its programmers have some under-

standing of related knowledge. As shown in Table 1, all of our

participants have had some experience taking undergraduate-level

or even graduate-level classes that taught them about proof strate-

gies in math and CS. However, some of them reported that they

still found difficulties applying their prior knowledge when writing

Coq programs.

Coq Programs and Math. When given a complex programming

task to work on, some programmers do not begin working on

it in code immediately. Instead, they may choose to start with

high-level ideas of what they want their program to achieve, and

further develop their ideas in pseudo-code before translating it

into a specific language. Similarly, in Coq’s case, many participants

5
Emphasis ours.

mentioned that, when given a programming task to solve in Coq,

their first reaction was usually to think about how they would solve

it mathematically or in plain English, and then tried to translate it

into a Coq program.

However, some participants mentioned that this translation pro-

cess was difficult for them, even though they have relatively strong

math background. P6 noted:

Maybe not even specific to Coq necessarily, just the

idea of thinking about programming and programs,

like in terms of... being something you can represent

mathematically, is [in itself] already kind of a barrier.

This constitutes an instance of Ko et al.’s Design barrier, since the

task of translating programs to mathematical language was very

cognitively intensive. Some participants reported that Coq’s tactic

names are confusing. P3 mentioned that they noticed a mismatch

between some of Coq’s tactic names and the behaviors they can

achieve mathematically: “I see some [tactics] that are commonly

used that have names, [but] the names that they have do not match

up with what I would call them in more...pure math terms.” This is

a problem related to Ko et al.’s learning barrier Use, since the tactic

name is obscuring the effect of the tactic.

Coq Programs and PL Concepts. The Coq source code is written

in OCaml, a popular functional programming language in the ML

(which stands for metalanguage) language family, which includes

support for typical functional programming language constructs

such as pattern matching in addition to having systems program-

ming modules. Several participants noted that this made it espe-

cially easy for them to understand the syntax and concepts, such

as P5, who said “it was fairly legible because it’s basically OCaml.”

He added that he noticed “a lot...of the [syntax] from ML family

languages were like, kind of around,” such as “arguments by spaces”

and arguments being “curried,” which refers to partial evaluation

of a function on just a few of its required parameters
6
.

Almost all of our participants had some level of familiarity with

functional programming, which may have helped them adapt to

using Coq. Modern object-oriented programming languages have

incorporated many concepts from functional programming, such

as in the case of Java adopting advances made by the Scala devel-

opment team. P6 mentions his recent experience with functional

programming using C#
7
:

.NET basically [takes] all the really nice features from

F#, like the function. The whole functional language

they’ve added them to C# ... this is really nice, you

know, all the type all the different types of like pattern

matching and things like that

Having some background with functional programming seemed to

help participants approach concepts in Coq.

We also observed that when participants had advanced experi-

ence in PL theory, they were able to develop a deeper understanding

of Coq. P5, who is a PL researcher, observed that

6
Currying is named for Haskell Curry. More information on currying can be found

here: https://en.wikipedia.org/wiki/Currying. Outside of the ML family and Haskell,

there is not much native support for in other programming languages.

7
C# is a general-purpose programming language developed by Microsoft.

https://en.wikipedia.org/wiki/Currying
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applied to prove goals, and you can like, prove sub

goals kind of using them? And lemmas felt a lot like

functions? Because it’s like, oh, well, I have this fact

that I want to prove. Right? And then I prove it. And

then I can use that fact, because I’ve had this little

lemma theorem and I can just hit stuff with that [the-

orem]. (lemmas are)

Interestingly, P5 is exactly right here — lemmas and theorems in

Coq are literally represented as functions internally. P5 went fur-

ther to reference the Curry-Howard Isomorphism, which is usually

summarized as stating that “programs are proofs, and proofs are

programs.” In Coq, this is realized as “functions are proofs, and

proofs are functions.” These connections give P5 a deeper under-

standing of Coq that might be more difficult for students without a

background in PL to grasp. This suggests that having programming

language theory knowledge is not only helpful for absorbing the

material in the class, but also for understanding Coq itself.

However, this may provide an even greater barriers to learning

for students who are not well-versed in programming languages

theory. Indeed, P3 described how they struggled with learning both

the PL theory concepts and Coq at the same time. They said that

“[their] impression of Coq...was like, ‘this is a language that has

been written with the intention of helping write proofs in general.”’

They found it difficult to translate the lectures about PL theory to

the “syntax of exactly what they’re writing out in the code.” The

lack of a background in programming languages theory may be a

confounding factor in P3’s case.

Coq Programs and Software Engineering. While Coq has extensive

use in academia, it is rarely used in the industry. As two of our

participants with extensive industry experience (P4, P6) mentioned,

testing is intrinsically not fun for software engineers. P6 commented

during his interview that

for a lot of programmers, testing can be the least fun

part. So they’re not motivated to write normal tests

that are very easy to use in their language...A lot of

people also find it challenging because not everyone

who’s in industry writing code every day

Engineers instead would rather design some new features and

write more code. Since verification can be seen as super-powered

testing, it can put off software engineers. Moreover, human errors

in programming cannot be easily avoided even with the use of static

analysis and verification tools. Malfunctions due to human errors

will still increase the financial costs, time used to fix the issues, and

human labors. For engineering teams and the entire company, these

extra costs bring no benefit even though the program is formally

verified by an interactive theorem prover, thus further discouraging

applying Coq to daily tasks and limiting Coq to a niche for a small

group of people.

Gatekeeping. Several participants made references to how they felt

that the resources, error messages, lack of community, and back-

ground knowledge required excluded them or others, and made it

more difficult to learn Coq. Such gatekeeping practices are common

to computer science in general, such as GitHub installation instruc-

tions that presume that you know how to use certain command

line tools, or simply the lack of documentation in general. However,

given the small community and high learning curve required to

learn Coq, this is exacerbated further.

In subsection 4.2, we describe how participants found the official

documentation to be unapproachable, which can be a form of gate-

keeping. P2 specifically pointed out that the official docs “use a lot

of terms...from math theory or...that are just way beyond the level

of...what a beginner user of Coq would know or understand.” As

an example, she mentioned the lia tactic, which stands for “linear

integer arithmetic.” P2 didn’t think that the documentation was

very good, since it said “something about like a ring
8
” that was at

a “higher level of math theory than what I think a beginner Coq

[user] would want.” She added that “a better version of the doc

would be like, you can use this to solve basic algebra...expressions.”

These issues create Selection and Use learning barriers, since it is

difficult to find the right tactic to use (Selection, i.e., looking for

“algebra” in the Coq tactic index, which does not bring up the ring
tactic) and from the description, it is difficult to tell what the tactic

actually does (Use).

P5, who is a PhD student in programming languages with ex-

tensive background knowledge and experience in PL, said there’s

“not enough of a community of people using [ITPs],” and that as a

“part of the formal methods research community...you just sort of

understand that [the lack of beginner-friendly documentation] is

a part of the hazing that you have to do to be in the community.”

He did not think this was the right thing the PL community to

encourage, and mentioned that “[he thought] people are kind of

reluctant to ask for help...broadly in PL.” This Environment barrier

may prevent a broader range of people from learning to use Coq.

Even P7, who was one of our most knowledgeable participants

in the area of PL theory, found the official documentation daunt-

ing with too many ways of stating the notation for tactics, and

was often too abstract to be useful. He thought that descriptions

of the essentials for Coq were lacking, even as an intermediate

user himself. The authors have anecdotally noted that sometimes

people assume that Coq is a tool that is just for people who know

programming languages, but not even this much is true, as even the

PL researchers in our study felt that they experienced difficulties

when using Coq.

Participants even seemed cognizant of how these gatekeeping

factors made them particularly well-suited to learning Coq. P5

qualified his observations about what he would like to see as im-

provements for Coq by stating “[he was] coming at [the potential

improvements] from a biased perspective, because like, all of the

math notation was fine for me. Like I could read things. Like I

could read what the proof goal meant, and sort of understand all

of that.” In this statement, P5 is acknowledging that the problems

that he saw were not necessarily problems that other students in

the class, or perhaps users in general, would experience, since he

was fine with the math notation used in Coq (see Figure 2 for an

example of Coq’s logic notation, which is similar to what is used in

mathematics).

8
Here, a ring refers to a mathematical object in abstract algebra: https://en.wikipedia.

org/wiki/Ring_(mathematics).

https://coq.inria.fr/distrib/V8.13.2/refman/addendum/micromega.html#coq:tacn.lia
https://en.wikipedia.org/wiki/Ring_(mathematics)
https://en.wikipedia.org/wiki/Ring_(mathematics)
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Figure 2: An example lemma in Coq containing ASCII-fied
math symbols. Written in English (or at least the kind of
English one finds in a math textbook), this would read: for
all natural numbers 𝑛 and𝑚, if 𝑛 = 0 and𝑚 = 0, then 𝑛 +𝑚 = 0.
One version using fairly standard mathematical and logical
notation would look like: ∀𝑛,𝑚 ∈ N, 𝑛 = 0∧𝑚 = 0 ⇒ 𝑛 +𝑚 = 0.
If you are familiar with either reading math textbooks or the
mathematical notation, you may be more comfortable with
reading Coq lemmas.

5 DISCUSSION
In section 4, we provided evidence for three additional learning

barriers, in addition to Ko et al.’s original six, that we observed

in our interviews with participants: Dead End, Applicability, and

Environment. We will now discuss implications of each of these

identified barriers, which may be particular to Coq and/or ITPs in

general.

Figure 3: A simple illustration of how proof states that look
very similar to humans are not solvable by the same tactics.
On the top left, we have a proof state where the we have a
hypothesis H that states that 𝑛 =𝑚, and our goal is to show
that 𝑛 =𝑚. The assumption tactic, whose effect is displayed
in the bottom left screenshot, leverages the hypothesis H to
provee the goal. The lemma silly’ is very similar to silly,
except that you are supposed to prove𝑚 = 𝑛, given that 𝑛 =𝑚.
In the top right screenshot, the proof state looks very similar
to the proof state in the top left screenshot. Since 𝑛 and𝑚 are
both natural numbers, a human would probably say that our
proof goal,𝑚 = 𝑛, is obviously true, since we have 𝑛 = 𝑚. It
would seem reasonable, therefore, to try the assumption tactic
in this case once more, but in the bottom right screenshot,
the tactic fails with the error: “No such assumption.” If the
user does not know that the assumption tactic requires an
exact, syntactic match, they may be frustrated by this error
and not know how to proceed.

5.1 Dead End
Due to Coq’s unique model of proof writing, as compared to tradi-

tional computer programming, users cannot plan out their proof

scripts in advance. As the proof unfolds, users may uncover proof

goals that they may not have anticipated that they would have

to prove. Unlike conventional programming languages, in which

it’s important to implement an algorithm of some sort, with proof

scripting, users are searching a space of possible proofs. Each proof

state may be amenable to a number of different tactics, which sim-

ply makes the search space enormous. Over time, it is possible

that Coq users may get a better intuition for which tactic to use in

particular circumstances, which is something that the first author

has observed in their own work with Coq. However, building up

that intuition is a process that takes an extended period of time,

even despite the first author’s extensive programming and proof

writing experience
9
. Until intuition about the various tactics is at a

high enough fidelity, users may be frustrated when their intuition

fails, as illustrated by the simple example in Figure 3.

When a Coq user’s human-based proof search algorithm fails,

they run into the Dead End barrier. This problem is exacerbated by

how difficult it is to search for the right tactic to use. As an example,

consider the scenario in Figure 3, where the user is trying to prove

the lemma silly’. They have already proved a similar lemma,

silly, which went through after just two tactics. But the same

two tactics don’t work for silly’. What should the user look up?

Perhaps the user could describe what they want to do as “flipping”

the equality in either the proof goal or the hypothesis, and then

they could use assumption. However, a search in the Coq tactic

index for “flip” or “flipping” doesn’t reveal any promising results.

One way to fix this problem would be to provide a way to search

for tactics based on how you would like to transform your proof

goal. Our preliminary findings suggest that participants would find

this useful, since several participants explicitly asked for a way to do

such a search. While other programming languages do not need this

sort of search tool, they also benefit from hundreds of thousands of

StackOverflow questions, blog posts, and other learning resources

that may come up in a Google search. Due to the small nature of

the Coq community, this sort of tool would help to make the most

of the available documentation.

5.2 Environment
Unlike many other programming languages with millions of users,

Coq’s specificity makes it very difficult to have a large userbase. As

a result, there does not exist a large, stable Coq community where

Coq learners can communicate their experiences with each other

or get help from Coq experts, either online or offline. Instead, when

someone starts learning Coq, not only would they be intimidated

by Coq’s high learning curve, but also they would usually feel un-

welcome in Coq’s user community. They may get such impression

from their first attempt of trying to read Coq’s official documen-

tation, seeing a ton of mathematical terminology, and realize that

the official documentation is not written for them. Or, when their

search of a specific Coq error message brings them to a StackOver-

flow post that has gone unanswered for months, they may also be

discouraged by the thought that nobody would be willing to help

9
Relative to the average computer science bachelor’s degree holder
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them. Over time, the lack of support for Coq newcomers shapes the

idea that Coq is a tool for a very small set of experts, and the path

for learners to become experts is unknown and undocumented.

Therefore, we hope to advocate for change in the Coq community,

including its development team and users, to put effort into making

the Coq community a more newcomer-friendly place. Of course, we

admit that such change cannot be achieved in short time, or without

the collective effort of Coq instructors, experts, and beginners.

• For Coq’s development team, one goal should be to make the

official documentation more readable for non-experts. As

in any other programming language, the official documen-

tation is often the number one go-to resource for learners.

Therefore, we should make sure that Coq’s new learners are

welcomed by easily understandable language and numerous

examples when they seek help from the official documenta-

tion, instead of being overwhelmed by jargon that only very

few people can understand.

• For Coq instructors, try to create a more collaborative atmo-

sphere for your students. New learners are easily scared away

if they perceive Coq community as unapproachable. There-

fore, we can build small Coq communities within student

body, and encourage them to help each other out. Hopefully

by the end, students would feel comfortable enough with

learning Coq with others, and bring this positive atmosphere

to the broader Coq community.

• For Coq users, start talking to other Coq users if possible!

Many new Coq users, at some point, have had the feeling

that they were the only person who could not understand

Coq. However, as soon as you start exchanging conversation

with other Coq learners, you will realize that you are not

alone. By learning from each other, you will find the learning

experience much more enjoyable.

5.3 Applicability
Coq sits at a particularly interesting intersection between coding

and proving. Coq programs consist of two major components: 1) a

specification of the system to be proved and 2) proof scripts that

show that desired properties hold for the system. Such a system

could be an operating system, a compiler, an algorithm, a data

structure, etc. Constructing a valid proof requires a solid amount of

background in mathematics and programming languages, making

Coq a tool with considerably high threshold. The high threshold

reflects that Coq is not relevant or useful to the majority of people

in their everyday lives, which drastically limits the suitable appli-

cations to ones where not verifying the software would endanger

lives or cost billions of dollars. Similar to other mathematical proofs,

the actual applications of the program proofs will not shine out

instantly. Although the Coq program can be used to demonstrate

strict mathematical correctness, its direct impacts are often con-

sidered subsidiary. People care more about the effects and values

brought by the program that Coq verifies than Coq itself.

In addition, unlike other general-purpose programming lan-

guages that have specific areas of applications or tangible results,

such as JavaScript for creating web pages, C to interact with low-

level systems, or Java to write applications that can be run on any

system that has a JVM, programs written in Coq are very hard to

materialize. Results from Coq are opaque, abstract, and intangible.

This abstractness and low applicability makes it less motivating and

interesting for people to try out and map the theoretical concepts

to practical usages. Many concerning practical questions remain

unresolved even if the program has been proved safe by Coq. The

learning process becomes dry and tedious. The Applicability barrier,

as a result, leads to a infinite inapplicability cycle.

While it requires a tremendous amount of work to link Coq

with practical applications, it is still educationally beneficial to

demonstrate tangible examples where learners can find relatable.

Our initial findings suggest that applicability will be improved after

the other barriers are resolved. By making Coq more usable and

approachable and the surrounding communities more welcoming

and supportive, more people and industries will use Coq to verify

their software. Then, a larger number of use cases and applications

will arise.

6 FUTUREWORK
Because of time constraints, we were not able to include as many

participants as we would have liked in our interview study. While

we found more interesting themes in our interviews with the seven

participants in this study than could even fit within the scope of

this class project, we would have preferred to have more subjects.

In addition, we would ideally follow up our interview study with

a think-aloud study, observing participants as they use an ITP.

However, given the limits of this course project, we decided to

focus on just the interview study at this point, and we leave a think-

aloud study for future work. Additionally, we acknowledge that

not all of our participants may have wanted to learn how to use an

ITP in the first place (i.e., since they may have taken CSE 505 for

reasons other than to learn Coq), which affects our results.

Furthermore, in the interest of having a focused contribution

in this paper, the we were unable to include a thorough analysis

of two of our identified themes: Pair Programming and Language

Deficiencies. These themes involve participants’ feelings about the

pair programming model in CSE 505, which was often critical to

participants’ experiences with learning Coq and how participants

felt in the course, and the peculiarities of Coq’s syntax, REPL in-

teraction model, and the two languages involved, Gallina and Ltac.

We hope to flesh out these ideas further in a full paper. Another

possible future direction would be to explore how community and

social interaction in the course, such as through the instructors,

the CSE 505 community notes, or an assigned homework partner,

affects students’ feelings about gatekeeping in PL or how much

they belong in PL research.

In the future, we might also consider exploring the suggestions

from our participants that could possibly lower the threshold for

learning Coq. For example, P4 and P6 both suggest that having a

modern and interactive programming environment would dramati-

cally enhance the coding and learning experience
10
. P6 praised the

interactive programming environment (REPL) used for Coq: “ I was

using VS code with that VS code extension, [where it] just kind of

like, proves as you go along. That was actually really nice and really

10
While Emacs has the most full-powered coding experience for Coq, and is certainly

widely used at least in the programming languages community, Emacs is also known

for its own steep learning curve.
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helpful.” Many participants (P1, P2, P3) commented that they could

not see any practical use cases of Coq in their professional/academic

career, which sometimes makes them hard to grasp some concepts

in Coq. Meanwhile, P4 and P6, as professional software engineers,

consider mappings from conceptual ideas in Coq to their applica-

tions in their day job a significant contributing factor for their Coq

learning process. P4 said that “[he] was somewhat inspired by how

much richness there is in that aspect of the industry.”. Some other

valuable suggestions from our participants include making the offi-

cial documentation more discoverable, improving Coq’s community

engagement, and making information about Coq more beginner

friendly. But due to the time constraints in this course, we were

unable to investigate these suggestions further, or follow-up with

participants to flesh out these ideas.

To answer the entire question of how people learn to use ITPs,

it would also be beneficial to interview people who use ITPs pro-

fessionally about their learning experiences. This, however, would

likely require several months of planning and scheduling, and thus

could not be completed in the scope of this course project.

Finally, in order to rule out the effects of programming knowl-

edge and other factors, we only recruited participants who took

CSE 505 at the University of Washington and had a decent amount

of programming experience, i.e., PhD or masters students or senior

undergraduate students in computer science. Therefore, we were

unable to produce any generalizable results and do not have a full

picture of how people in general learn to use ITPs, but given that

this study is the first of its kind, this is already a step forward, and

we hope to build upon it in the future.

7 CONCLUSION
In this paper, we have explored how several people who took a

programming languages course learned to use Coq, an interactive

theorem prover, as a part of that course. After conducting inter-

views with the participants and analyzing their data, we found that

preliminary evidence for applying Ko et al.’s six learning barriers

to Coq as well as initial suggestions for three new learning barri-

ers, (Dead End, Applicability, and Environment), that may be more

specific to Coq or interactive theorem provers in general. These

findings will help shape future research into how people learn to

use interactive theorem provers, which we hope to explore further

in future studies.
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